Hacia la imagenología tomográfica de mama
Futuro y presente

Ioannis Sechopoulos, Ph.D., DABR
Advanced X-ray Tomographic Imaging (AXTI) Lab
Department of Radiology and Nuclear Medicine
Radboud University Medical Center
and
LRCB – Dutch Reference Centre for Screening
Nijmegen, the Netherlands
Towards Tomographic Breast Imaging

2 D 2+ D 2.2 D 3 D

Standard Mammography Stereoscopic Mammography Digital Tomosynthesis Dedicated Breast CT

(Is your optical system can handle it!)

Digital Mammography Improvements

Detection in some patient subgroups (DMIST)

Digital Mammography Improvements

Workflow
Digital Mammography Improvements

Contrast-enhanced imaging

29% of cancers missed by “overlying tissue”

STEREOSCOPIC DIGITAL MAMMOGRAPHY
Benign Mass

Note shift

Translated X-ray source

X-ray beam limits

Lesions of Interest

Detector

These two images are shown separately to each eye
High Risk Screening Study
N = 1298 cases

<table>
<thead>
<tr>
<th></th>
<th>Mammo</th>
<th>Stereo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>12/19</td>
<td>13/19</td>
</tr>
<tr>
<td>Recall rate</td>
<td>12.9%</td>
<td>9.6%*</td>
</tr>
</tbody>
</table>

Stereoscopic Mammography
Promising Results

Stereoscopic Mammography
Cheap!
(and fast!)

Stereoscopic Mammography
Too little, too late?
Stereoscopic Mammography

In Memoriam: The Death of 3D TV

So long 3D TV, we’ll see you in another thirty years.

The elephant in the room with 3D were the glasses, no one really wanted to wear them whilst sitting in their reading room. ~ Dead.

TV Technology Trends: The Death of the 3D TV

Digital Breast Tomosynthesis

Recall

Lesion of Interest

Detector

This information is used to reconstruct the volume

Courtesy of Hologic Inc.
Recall

Courtesy of Hologic Inc.

Find the 8 differences...
Benefits

Mammography++
- System
- Workflow
- Interpretation
- Dose

...but with some discrimination of vertical position!

(Some) Screening Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>N</th>
<th>Cancer Det Rate Δ</th>
<th>Recall Rate Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORM-2</td>
<td>9,672</td>
<td>DM: +35%</td>
<td>DM: +16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synth: +40%</td>
<td>Synth: +30%</td>
</tr>
<tr>
<td>OSLO</td>
<td>25,547</td>
<td>+30%</td>
<td>-13%</td>
</tr>
<tr>
<td>MALMÖ</td>
<td>14,848</td>
<td>+30%</td>
<td>+43%</td>
</tr>
</tbody>
</table>
Implementation?

An adjunct to mammography?

Or a replacement of mammography?

Do we need two views?
Or is **one** view enough?

One-view breast tomo: *feasible?*

Retrospective studies
- Gennaro 2010: 1v tomo = 2v DM
- Svane 2011: 1v tomo = 2v DM
- Svahn 2012: 1v tomo > 2v DM
- Wallis 2012: 1v tomo = 2v DM

Malmö Breast Tomosynthesis Screening Trial (MBTST)
- Lång *et al* 2016: 1v tomo > 2v DM
 - +43% increase in cancer detection rate

Study design

6 readers from 3 different institutions

Does 1-view experience matter?

<table>
<thead>
<tr>
<th>3 readers < 3 years</th>
<th>3 readers > 3 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity

Less experienced, significant increase respect to 1v tomo, p < 0.05

![Sensitivity Diagram](image)

Specificity

Less experienced, significant decrease respect to 1v tomo, p < 0.05

![Specificity Diagram](image)

Case-based ROC

Average all readers

1v tomo not significantly different

![Case-based ROC Diagram](image)

JAFROC analysis

NO statistical difference between 1v DBT and the rest of modalities, p = 0.08

![JAFROC Analysis Diagram](image)
Limitations
Not screening population
1/3 were recalls seen with 2-view mammo
One vendor

Conclusion
Perhaps enough

SYNTHETIC MAMMOGRAMS

Mammogram Orig. Synthetic Tomo Slice

Recall Rates

<table>
<thead>
<tr>
<th></th>
<th>DBT + FFDM</th>
<th>DBT + Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>False Positive Rate</td>
<td>% Detected Cancers</td>
</tr>
<tr>
<td>1st Generation</td>
<td>53.1</td>
<td>83.5</td>
</tr>
<tr>
<td>2nd Generation</td>
<td>45.6</td>
<td>87.3</td>
</tr>
</tbody>
</table>

Skaane et al., Radiology, Vol 271(2), 2014

Synthetic Mammograms

Current synthetic 2D image can replace FFDM in combination with DBT

Radiation Dose DBT/DM from Clinical Studies

- 1-view DBT vs DM = 0.34 – 1.0
- 2-view DBT vs DM = 0.68 – 1.17
- 1-view DBT + DM vs DM = 1.03 – 1.50
- 2-view DBT + DM vs DM = 2.0 – 2.23

Svahn et al., The Breast, 24 (2015) 63-66
Synthetic (?)

1-view DBT vs DM = 0.34 – 1.0
2-view DBT vs DM = 0.68 – 1.17

TO BE ANSWERED...

Remaining questions in DBT

What is a screening DBT exam?

Remaining questions in DBT

Reading time
Remaining questions in DBT

Reading strategy

False negatives: mammo vs tomo

<table>
<thead>
<tr>
<th></th>
<th>Tomo + Mammo -</th>
<th>Tomo - Mammo +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Radiographic appearance</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Interpretative error</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Lint et al, BJ Radiol 2014;87:20140080

Remaining questions in DBT

What after a tomo screen?

Multiple rounds?
DEDICATED BREAST COMPUTED TOMOGRAPHY
Fully-3D SPECT-CT: CT source down

Fully-3D SPECT-CT: CT source up

White arrow points to 16x20cm² CZT-based SPECT camera; orange arrows point to x-ray CT source, with opposed 40x30cm² flat-panel detector; phantom on radiopaque bed.

Spiral BCT

CLINICAL IMAGES

Coronal

Transverse
BCT – Mammo Comparison

Mammo – BCT: Fibroadenoma

He et al., Eur Radiol, 2016

Mammo – BCT: Microcalcifications

He et al., Eur Radiol, 2016
Mammo – BCT: Microcalcifications

He et al, Eur Radiol, 2016

BREAST DOSE

AGD Equivalent to 2-view Mammo

Boone et al, Medical Physics, 2005; 32(12), 3767

Breast CT vs. Mammography

Sechopoulos et al, Medical Physics, 2010; 37(8), 4110.
Breast CT vs. Mammography

Anthropomorphic Phantom

Sechopoulos et al., Radiology, 2008

Dose Variation with Projection Angle

Sechopoulos et al., Radiology, 2008
Relative Organ Dose

<table>
<thead>
<tr>
<th>Organ</th>
<th>50 kVp</th>
<th>80 kVp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>1.75%/0.79%</td>
<td>3.08%/1.58%</td>
</tr>
<tr>
<td>Lung (IL)</td>
<td>1.79%/2.03%</td>
<td>2.93%/3.25%</td>
</tr>
<tr>
<td>Thymus</td>
<td>1.27%</td>
<td>2.35%</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.08%</td>
<td>0.19%</td>
</tr>
<tr>
<td>Uterus/Fetus</td>
<td>0.010%</td>
<td>0.026%</td>
</tr>
<tr>
<td>Clavicle (IL)</td>
<td>1.57%</td>
<td>2.80%</td>
</tr>
<tr>
<td>Rib Cage</td>
<td>4.14%</td>
<td>5.56%</td>
</tr>
<tr>
<td>Sternum</td>
<td>5.16%</td>
<td>7.74%</td>
</tr>
</tbody>
</table>

Sevastos et al., Radiology, 2008

CLINICAL PERFORMANCE

First Results (N=69)

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conspicuity of Lesions at Breast CT Compared with Screen-Film Mammography</td>
</tr>
<tr>
<td>Category</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>All</td>
</tr>
<tr>
<td>Lesion type</td>
</tr>
<tr>
<td>Masses or other findings</td>
</tr>
<tr>
<td>Microcalcifications</td>
</tr>
</tbody>
</table>

Breast CT | 5.5 | 10 Mammo

Lindfors et al., Radiology, 2008

Preliminary Results Diagnostic Work-up

16 BI-RADS® 4 or 5 after work-up Bx:
8 malignant lesions
8 benign lesions
15 adequate BCT studies
Preliminary Results Diagnostic Work-up

Breast CT:
- 8 malignant ➔ 8 biopsy
- 8 benign ➔ 5 biopsy
 - 3 no biopsy

BI-RADS c and d density breasts (n = 270 lesions)

<table>
<thead>
<tr>
<th></th>
<th>MG</th>
<th>US</th>
<th>BCBCT</th>
<th>CE-BCBCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>78.4</td>
<td>81.1</td>
<td>89.2</td>
<td>98.7</td>
</tr>
<tr>
<td></td>
<td>(67.3–87.1)</td>
<td>(70.3–89.3)</td>
<td>(79.8–95.2)</td>
<td>(92.7–100.0)</td>
</tr>
<tr>
<td>Specificity</td>
<td>70.1</td>
<td>82.7</td>
<td>80.1</td>
<td>85.00</td>
</tr>
<tr>
<td></td>
<td>(65.6–75.6)</td>
<td>(80.0–90.3)</td>
<td>(73.8–85.5)</td>
<td>(68.3–80.9)</td>
</tr>
<tr>
<td>AUROC</td>
<td>0.782</td>
<td>0.834</td>
<td>0.846</td>
<td>0.868</td>
</tr>
<tr>
<td></td>
<td>(0.728–0.830)</td>
<td>(0.784–0.876)</td>
<td>(0.798–0.887)</td>
<td>(0.822–0.906)</td>
</tr>
</tbody>
</table>

All patients (N = 442 lesions)

<table>
<thead>
<tr>
<th></th>
<th>MG</th>
<th>US</th>
<th>BCBCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>93/110</td>
<td>93/110</td>
<td>97/110</td>
</tr>
<tr>
<td></td>
<td>(84.5%)</td>
<td>(84.5%)</td>
<td>(88.2%)</td>
</tr>
<tr>
<td></td>
<td>(76.4–90.7)</td>
<td>(76.4–90.7)</td>
<td>(80.6–93.6)</td>
</tr>
<tr>
<td>Specificity</td>
<td>270/332</td>
<td>288/332</td>
<td>279/332</td>
</tr>
<tr>
<td></td>
<td>81.3 %</td>
<td>86.7 %</td>
<td>84.0 %</td>
</tr>
<tr>
<td></td>
<td>(76.7–85.4)</td>
<td>(82.6–90.2)</td>
<td>(79.6–87.8)</td>
</tr>
<tr>
<td>AUROC</td>
<td>0.829</td>
<td>0.856</td>
<td>0.861</td>
</tr>
<tr>
<td></td>
<td>(0.783–0.875)</td>
<td>(0.820–0.888)</td>
<td>(0.825–0.892)</td>
</tr>
</tbody>
</table>

CLINICAL IMPLEMENTATION QUESTIONS
Questions in BCT

Screening or Work-up?

Questions in BCT

Tissue coverage?

Questions in BCT

0.1% of tumors in Tail of Spence (N=839)

Questions in BCT

Reading time? (reading strategy)
Contrast Enhanced BCT

He et al., Eur Radiol, 2016

Malignant

benign

Courtesy of John Boone, Ph.D.
Contrast Enhanced BCT Subtraction

Pre-injection | Post-injection | Registered Subtraction

Large arrows point to the same location of a surgically confirmed DCIS lesion in 48yo patient. Small arrow points to posteriorly located biopsy clip. Blobs posterior to breast are chest-wall signals from myocardial uptake of 99mTc-sestamibi.

Towards Tomographic Breast Imaging

<table>
<thead>
<tr>
<th>2 D</th>
<th>2+ D</th>
<th>2.2 D</th>
<th>3 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Mammography</td>
<td>Stereoscopic Mammography</td>
<td>Digital Tomosynthesis</td>
<td>Dedicated Breast CT</td>
</tr>
<tr>
<td>(If your optical system can handle it!)</td>
<td></td>
<td></td>
<td>(Is more always better?)</td>
</tr>
</tbody>
</table>
Towards Tomographic Breast Imaging

2D 3D 4D

Standard Mammography

Dedicated Breast CT

(D is more always better?)

Dedicated Breast CT

FUNCTIONAL!!

4D Breast CT

Tumor Biology Profiling

4D Breast CT

Neoadjuvant chemotherapy treatment planning

4D Breast CT

Response prediction/monitoring
Correct Quantification

4D Noise Filtering

Motion Correction

Motion Correction
Patient BCT Classification

[Images of MRI scans showing different tissue types and classifications]

Courtesy of Dr. Despina Kontos
Cabello et al., IEEE TMI, under review

4D Breast Phantom

[Graph showing HU values over time with three lines representing tumor, fibroglandular tissue, and adipose tissue]
[Image of a 3D reconstruction of a breast phantom]

Courtesy of Dr. Despina Kontos
Cabello et al., to be presented at RSNA 2017

Image-based phenotyping

[Heatmap showing various tissue classifications and densities]

Courtesy of Dr. Despina Kontos
Cabello et al., to be presented at RSNA 2017

pCR prediction

[Graph showing prediction curves for pCR with different markers and conditions]

Courtesy of Dr. Despina Kontos
Response Monitoring

Towards Tomographic Breast Imaging

What if

CC+MLO → CC+MLO+ML
Methods

Screening with DBT Combo mode

Results

- 842 work-ups after screening DBT in previous 30 days
- 266 ML/LM view during work-up
- 133 biopsied cases
- 106 non-biopsied cases
- 121 patients in final cohort
- 28 BI-RADS 3 after work-up and excluded
- 0 patients excluded due to breast implants
- 11 patients excluded due to breast size
- 106 patients excluded follow-up unavailable

Breast Density

<table>
<thead>
<tr>
<th>Density</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-dense</td>
<td>42% (51/121)</td>
</tr>
<tr>
<td>Dense</td>
<td>58% (70/121)</td>
</tr>
</tbody>
</table>

Methods

Diagnostic work-up with mammo views
Abnormality

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcifications</td>
<td>31% (38/121)</td>
</tr>
<tr>
<td>Soft Tissue</td>
<td>64% (78/121)</td>
</tr>
<tr>
<td>Both</td>
<td>4% (5/121)</td>
</tr>
</tbody>
</table>

ROC results – Overall

<table>
<thead>
<tr>
<th>Modality</th>
<th>AUC</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-View DM</td>
<td>0.846</td>
<td>0.787 – 0.905</td>
<td>0.692</td>
</tr>
<tr>
<td>DBT</td>
<td>0.853</td>
<td>0.802 – 0.904</td>
<td></td>
</tr>
</tbody>
</table>

ROC results – Secondary

No significant difference between:
- Attendings vs. fellows
- Microcalcifications vs. soft tissue
- Non-dense vs. dense breasts

Abnormality

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>3-View Digital Mammography (%)</th>
<th>Digital Breast Tomosynthesis (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign recall rate</td>
<td>53 (43 – 84)</td>
<td>52 (44 – 76)</td>
<td>1</td>
</tr>
<tr>
<td>Malignant recall rate</td>
<td>74 (50 – 90)</td>
<td>75 (59 – 89)</td>
<td>1</td>
</tr>
</tbody>
</table>
Reading time

3-view DM: 49.4 seconds
DBT: 73.7
p < 0.00001

Limitations

Biased sampling:
Screening with tomo

Unilateral exams
No location

Towards Tomographic Breast Imaging

2 D 2+ D 2.2 D 3 D

Optimal

Standard Stereoscopic Digital Dedicated
Mammography Mammography Tomosynthesis Breast CT

Situation en France

Courtesy of Dr. Patrice Heid
CDMAM Phantom

Gold disc detection

Gold disc detection

QUALITY CONTROL
Screening stopped:

2016: 12 times
2015: 15 times
2014: 5 times

Reasons

• Grid lines clearly visible
• Compression paddle height indication off
• Lines caused by mechanical shocks
• during readout
• Accidental dose increase by service engineer (70% !)

Thickness indication off

Thickness 63 mm
W/Rh 30 kV

Thickness 139 mm
W/Ag 39 kV

Thickness indication off

Thickness 63 mm
W/Rh 30 kV

Thickness 139 mm
W/Ag 39 kV
Lines due to mechanical shocks

Example of grid lines visible

Example of detector problem

Step 1:
Optimal Mammography
Summary
Clinical need to reduce superposition

Stereoscopic mammography
Digital breast tomosynthesis
Dedicated breast CT

Summary
Perhaps....

3 view mammography
Summary

Definitely....

Optimized technology at peak performance